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Learning One Subprocedure Per Lesson
Kurt VanLehn

Abstract

Sierra 1s a program that learns procedures incrementally from examples,
where an example i$ a sequence of actions. Sierra learns by completing
explanations. Whenever the current procedure is inadequate for explaining
(parsing) the current example. Sierra formulates a new subprocedure whose
instantiation completes the explanation (parse tree). The key to Sierra's
success lies in supplying a smail amount of extra information with the
examples. Instead of Qiving it a set of examples. under which conditions
correct .2arning is provably impossible. it is given a sequence of "lessons.”
where a lesson is a set of examples that is guaranteed to introduce only one
subprocedure. This permits unbiased learning. i.e.. learning without a priori,
heuristic preferences concerning the outcome.
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Learning One Subprocedure Per Lesson
Kurt VanlLehn

1. Introduction

Much research in machine learming has concentrated on induction. i.e.. learning from
examples. Understanding induction s certainly one of the great ntellectual challenges
of our times  Induction stands at the center of both the psychology of learring and

the philosophy of science.

More recently. induction has been heralded as a potentai solution to the knowledge

acquisition problem of expert systems. However, Al has not had much success at

applying induction to practical problems. The difficulty is this: In practical settings.
only a finite set of examples can be presented to the learner. but the knowledge
representation language usually has enough expressive power that there are aiways
infinitely many representable generalizations that are consistent with the exampies that
the learner has seen. (The formal results that justify this assertion will be reviewed
later.) That is, the examplés just do not contain enough information to correctly
identify the target generalization. Consequently. the learner must guess. Al research
on induction has consisted largely of studying the efficacy and domain independence
of various heuristics for guessing. in this respect. the induction problem is quite
different than other kinds of Al problems. e.g.. recognition or synthesis. where correct
answers are computable n principle. but non-Al techniques would take astronomically

long to compute them.

The nherent uncertainty of induction suggests studying forms of quasi-inductive
learning. where a teacher gives some extra information to the learner in addition to
the examples Winston argues for “the importance of good training sequences
prepared by good teachers | think it 1s reasonable to believe that neither machines
nor chiidren can be expected to learn much without them (47 pg. 6]." As
Winston [48. 49. 50] has pointed out. there 1s a spectrum defined by how much extra
information 1s provided  On the one end of the spectrum s induction. where all the
iearner receives 1S examples On the other end s learming by being told. where the

learner 1s given a complete descrniption of the target generalization in some language
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The kind of iearning studied here falls closer to the induction end of the spectrum
end than the learning-by-being-told end. because very itle extra nformation Is
supphed It could be called learming from lesson sequences because the extra
information given to the learner 1S embedded n the way that the examples are
parntioned nto lessons and the way the lessons are sequenceg In the last section of
this article a varnant of learning from lesson sequences wil be discussed wheremn

lessons are omitted. ang the example sequence alone carries all the extra information.

One of the most important areas for applying nduction s in the learming of
procedures Procequre learning s the central problem in programming by
examples (1. 7 8. 40 41} in psychological maodelting of skill
acquisition [2. 3. 33. 44 45]. and in automating protocol analyses (6] Machine
learmng of procedures has been suggested as one way o solve the knowiedge
acaguisition problem for expert systems {31]. and as a technique for modeliing students
in ntelligent tutoring system [27. 25]. Undoubtably. there are many other applications

for procedure learning systems that have not yet been studied

An obvious testbed for the new approach of learning from lesson sequences 1s a
system to learn procedures. This article presents Sierra. a system that learns

procedures from lesson sequences.

11 The particular learning task solved by Sierra

Sierra was built for a specific application. a psychological study of the acquisition of
mathematical skills. arnthmetc n particular [44. 45] Although 1t would make the
reader's job easier it Sierra's techniques were displayed in a toy problem domain. this
article presents an unsimphfied. accurate picture First. the kinds of examples given to

Sierra will be described followed by a description of lesson sequences.

Two general kinds of procedure induction problems have been addressed in the
literature  The harder one is learning a procedure from input-output pawrs [1] The one
studied here is learming from action sequences it 1S assumed that the agent that
executes procedures s like a human or a robot n that its procedures manipulate both

+1} an external world that all agents have access to. ard :2) an -nierral state amich

no2arly ok 7 3] this torm ot cearming vas calles sedrning e g ec
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1§ private. The internal state might include a stack. for in; ance An action sequence
consists of a sequence of state changes to the external world (or eguwvalently. a
sequence of world states). The learner cannot see the internal state of the teacher
during an action sequence Action sequences are “examples” of the target
procedure’'s execution. The induction task is to infer a procedure from such examples.
There are two kinds of examples. positive and negative. A posimive example s an
action sequence that an induced procedures should generate when it is run on the
probiem that appears as the initial state in the action sequence. A negaltive example

'S an action sequence that an induced procedure should not generate.

Sierras nput 1s an ordered sequence of lessons. where a lesson i1s an unordered
set of examples. Lessons contain only postive examples. Each lesson is marked with
a single bit The bit is 1 if the lesson is a “normal” lesson. and O if it 1s an
‘optimization” lesson®.  In a moment. the semantics of lessons and their marks will be
described The point to note here is that the extra mformation given to Sierra over
and beyond the set of examples consists only of (1) the partition of the exampies into
tessons. (2) the ordering of the lessons. and (3) the binary mark on lessons. Although
this 1s very little extra information. it vastly simplifies Sierra’'s induction task. The next

section discusses why.

Sierra learns procedures incrementally Each lesson builds on the procedure learned
in a previous lesson. This can be best illustrated with a familiar procedure. such as
the procedure for ordinary multicolumn subtraction. Figure 1-1 shows a lesson
sequence for subtraction. There are six lessons. Although a typical Sierra lesson has
about five examples. the figure shows only the first example from each lesson.  Each
example 1S shown as a seguence of states. Figure 1-2 shows a corresponding
sequence of procedures. where the procedures are sketched as Augmented Transistion
Nets (ATNs). The procedures correspond to the lessons as follows PO s 1nduced

from lesson LO; P1 from PO and L1. P2 from P1 and L2 etc The last procedure

2
TA igrger 20 aCLatv Yomarvers “uid O€ useg 2 g . T2oate 3 RS Tt megatiee eamop e

e e et B T L A A T A
RS I R TN T N, R

- % e . PRI R, ‘e
PRSI
Lo dlasiasntatatalatal L

TR e e R
- . P P Y - an e T el S LT .
PR P RY LR LIRS X P, AL N YRR acata A..‘_.;A'A"‘_L"‘l“-‘l‘

.3,,5 ;

arm

Ny
A
S N4

oy

L
PP

[ ‘I‘ .-..A'
. h 4

L

¥

AT

¢ e ..
v LT e N e e T s
Ao faletonean sea._n




* A A

L N N

ZrE Lol ot g

A _‘»‘![“."_‘*_ LA T st T i s i

4

P5. i1s a compiete correct subtraction procedure >

1.2. Why lesson sequences simplify procedure induction
An earlier discussion put learming from lesson sequences on the same scale as

learning by being toid. This may seem strange. Information encoded in the lesson

sequence does not seem like a linguistic expression. However, it functions in exactly

the same way. Linguistic expressions have meaning for the learner only under

interpretation.  The conventions governing the interpretation are known by both the

teacher and the learner. The teacher generates explanationé in such a way that the
learner will. 1deally. interpret them the way the teacher wants them to be interpreted.

The same kind of convention-driven interpretation underlies the use of lesson

sequences. The formatting information (i.e.. the partition. the order. the marks) is

generated by the teacher who understands the interpretation that that learnar wil place
on that information. Two interpretive conventions are explored here:

1. A normal lesson introduces at most one subprocedure. Roughly put, a
subprocedure is like one COND clause in Lisp. a test. which if true causes
an implicit PROGN of function calls to be executed. A precise definition of
“subprocedure” will be given after the knowledge representation language
for procedures is described.

2. A normal lesson introduces material that will allow the learner to solve
problems that it could not solve before. An optimization lesson shows the
learner more efficient ways to solve the same class of problems that it
could solve before the lesson. Furthermore. a normal lesson may not
introduce optimized methods. wherein some of the procedure’s calculations
are performed internaily and do not appear in the action sequence.

These two conventions are not arbitrary. They directly address two of the worst

combinatorial problems in induction. The first convention allows the learner to solve
the aisjuncuon problem. which involves deciding when and where to place disjunctions
(The disjunction problem will be discussed at fength in section 3.) For procedures. a

disjunction 1s a branching (e.g a COND) in the flow of control. Convention 1. above

informs the learner that there will be at most one new disjunct per lesson. This cuts
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down the possible places for disjunctions to a finite. smail set and thereoy significantly
reducing the learner s search space of possible procedures. This makes the learners
jIob much easier In fact. it makes it possibie as opposed to impossible The first

convention s named one-gisjunct-per-lesson.

The secona conventon fulfils a similar function with regards to a second
combinatonial problem. the nwisible objects problem !f two wvisible objects in a state
can be related by arbitranly long chains of calculations with arbitardy many
intermediate results. then induction 1S combinatonally infeasible The intermediate resuits
are invisible objects because they don't appear in the examples if they could pe
seen. the combinatoncs would be substantially reduced The second convention
provides this Dy mandating that normal lessons explicate such chains by showing all
the intermediate results. Optmization lessons may come aiong later and show how to
suppress the intermediate results and perform the calculations “in one's head © The

convention is called show-work.

1

.~
.
l" y‘l

']

To evaluate the efficacy of this approach, or any approach to learning from matenal

P A

prepared by a teacher. one must evaluate burdens placed on both the teacher and

. -
L B el

the learner One would expect there to be some work required of each. because
learning-from-lesson-sequences lies haifway between induction. where the learner does

most of the work. and learning-by-being-told. where the teacher does most of the work.

The teachers job s to generate a lesson sequence for a given target procedure
that satisties one-disjunct-per-tesson and show-work. This task can be accomphlished
mechamcaily f the teacher writes down the target procedure n  an appropnate
procedural language e g. Lisp  But wnting procedures can be gquite a bit of work. A
more nteresting  possibility 1s  that expernenced teachers generate such lesson
sequences naturally. without even realizing that their lesson sequences obey the two
conventions. This is exactly what my research on naturally occuring lesson sequences
i mathematics shows {44 d45] Educators tend to generate well-formed lesson
sequences even though thev probably are not aware of the conventions. Apparently.
they nave an ntuiive unconscious appreciation of the conventions This allows them
19 generate appropriate lesson sequences without going through the work of expicating

and tormalzing the procedures taught by those curricula
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This raises an interesting possibility for applications where a computer system learns
from a human user. sucn as programming-by-example systems (e.g.. (8]) or learning
apprentice systems (e.g.. [30]). Such systems usually assume that there S ng
meaningful structure in the example sequence that is presented to the system.
However, if that the users view themselves as teaching the system. they may order
their examples in certain ways. At the very least. they will present easy cases before
hard cases. If we had a precise definition of the ordering critenion that users tend to
employ, and if the learning system were designed to take advantage of these tacit
- constraints on the instructional material. then it could recover nformation that is latent
in the sequential ordering. This latent information might ailow it to converge faster
and more reliably on the knowiedge that the user is trying to teach it. One-disjunct-
per-lesson and show-work are exactly such constraints. and they do make Sierra a
more effective learner. Further research is needed 10 see how domain-general they

are and to see whether there are other constraints like them.

It might seem strange that teachers should obey conventions like one-disjunct-per-
lesson and show-work without being aware of them. Looked at a different way. it
would seem strange if they didn't. The teacher-learner situation is an extended
communication act. We know that people naturally. unconsciously obey many
conventions on natural language communication acts (see. e.g.. (37]). it seems entirely
likely that the teacher-learner discourse should also be formatted by conventions. In
the hope that this anaiogy 1S approximately correct. the conventions that govern
learning will be named felicity conditions. an early name for certain natural

. unconsciously-followed language conventions (4].

The point of felicity conditions is to make the learner s job easier without burdening
the teacher too much. One-disjunct-per-lesson and show-work make Sierra’s job rather
simple. although not trivial. The following is a quick sketch of how 1t works The

details will be presented later.

13 How Sierra works

Sierra s algorithm 1s catled fearming Oy completng explanatons It begins Dy trying 1o
parse an acton sequence. using the procedure as f it were a grammar but a
jrammar with data How. conditional tests etc It parsing succeeds the resuiting

parse 'ree s a trace (1e subroutine caling hierarchyr.  Looked at «n a afferent way




P T e T

9

the parse tree constitutes an “expianation” for the action sequence. For instance. a
partial explanation for an individual action in a sequence can be read off the parse
tree by walking upwards from the action. i1.e. the action was done in order to satisfy
the goais of the subprocedure that called it (which 1s the next node above it in the
parse tree). and the caller was executed in order to satsfy its caller. and so on. A
complete expianation for an action involves taking into account data flows and side-
ettects. so explict links for these effects are included in Sierra's parse trees. Such
links are analogous to the causal links that thread through the hierarchical structures
of explanations of. e.g.. kidnapping stones [10]. So explaining an action sequence is

just parsing it. Such parsing is a form of plan recogmition (e.g.. {16. 20. 36]).

The conditional tests and data flows of a procedure are used to gude Sierra’s
parser. significantly narrowing its search for a parse tree. However. the parser may
choose to relax such tests or ignore them entirely. This may allow it to fing a parse
tree when it could not do so otherwise. (f so. then a simple form of learning can be
performed  The relaxations made by the parser are editted into the procedure. For
instance. it certain predicates in a conditional test must be ignored by the parser. then
Sierra removes them from the conditional. This generalizes the condition test. Now if
the parser redoes the narrow search, the one that obeys the constraints imposed by
conditional tests. etc.. it will find the parse tree Sierra has generalized the
procedure allowing it to explain examples that it could not explain before. This
learning techrique s simidar to  one form of  explananon-based  learming
{10. 11 14 32 39 A more nteresting kind of learning occurs when it is
impossible to complete a parse. no matter how much the procedure i1s generalized. In
this case. the learner's procedure s fundamentally incompiete. One or more new
subprocedures must be invented. Learning by completing explanations 1s one approach

to accomplishing the learning required in this situation.

Sierra uses a straightforward technique A similar approach was employed in three
independent investigations {16. 18 43} The first step 1s 10 parse the action sequence
bottom-up as far as possible and top-down as far as possible The candidate
solutions to the learning task consist of any new subprocedure ior set of new

subprocedures) that Iinks the top-down parse to the bottom-up parse in such a way

that a complete parse tree 1S yelded Even for short action segquences there can be
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millions of candidates The challenge 1s t0 cope with this large space of candidates
The soiution used by the three independent investgators [tond] s 1o place such
strong constraints on the parsing that only one (or a few) of the possible candidates
are generated. My solution 1s 1o (1) use unconstrained parsing. (2) assume that only
one new subprocedure will be acquired. and (3) use a factored data structure (similar
to LUNAR's well-formed substring table [51] and GSP's chart {21]) to efficiently
represent the space of possible candiates. The selection of a candidate from this

space 1S accomplished by a collection of simple filters.

This technique for learming by completing expianations makes it simple to perform
induction across several action sequences. Each action sequence yields a space of
candidate solutions represented as a GSP-style chart Induction amounts to

intersection of these spaces.

In principle. this techmgue can be used in any domain which learns mierarchical
knowledge structures from sequential exampies. Thus. it should extena to learning
grammars from strings. learning story understanding schemata from stories. and

learning device models from the operation of machines.

Many of the bpasic intutions behind Sierra have been presented. The remaimnder of
this article presents the details of how Sierra accomplishes its task. The first section
presents the knowiedge representation language used for procedures. The next
section reviews the induction problem. and isolates disjunction as a key difficuity.
One-disjunct-per-lesson is proposed as a central simplifying constraint for nducing
procedures. It in turn leads to the definition of “subprocedure.” in section 4. in terms
of three parts: its skeleton. its patterns and its functions. This reduces the problem of
inducing a subprocedure to three subproblems. one for each part The subsequent
sections discuss the Sierra algorithms. for. respectively. skeleton induction. pattern
induction and ‘unction nduction The final sections discuss the generaity of Sierra

and speculate on the origins and applications of felicity condiuons

2. The representation of procedures

it 5 convernient to use a mixture of nomenclature from production systems and Ang-
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Or graphs (AOGs).“ The latter equivalence class of representations includes the one
used by Sierra. Aithough any of the formalisms couid be used to describe Sierra's
representation the mixture of production systems and AOG s used here) The
production systems nomenclation is good for showing details. the AOG view is good for

showing the overall structure.

Figure 2-1a sketches the aAOG view of a subtraction procedure learned by Sierra.
The nodes are called goals. and links are called rules. Rules are directed and are
always drawn running downward. The nodes just beneath a goal are called its
subgoals. Currently. there are two types of goais: aNnD and OR>. To execute an AND
goal. all the subgoals are executed. To execute an OR goal. just one of the subgoals
is executed. ANO goals are drawn with boxes around their labels. Drawings of AOGs
abbreviate goals whenever they appear more than once. For instance. OVRWRT 1S
called from several places in the AOG of figure 2-1a. but its subgoais are drawn only
for one of these occurrences. Although abbreviation makes this AOG look like a tree.

it 1s really a cyclic directed graph due to the recursive calls of MULTI and REGROUP.

AOG drawings do not indicate several kinds of information. This information is readily
visible in the production system view. Figure 2-1b shows the definitions for the non-
primitive goais in the A0G of figure 2-1a. Goals have arguments. For instance.
sus1COL has three arguments. T. B and A Arguments have the substitution semantics
of lambda caiculus. That is., the AOG language s applicative. There are no
assignment statements. The only side-effect operators are those that change the
external state. i.e.. writing a digit in an answer. The applicative property has important

consequences that will be discussed later.

A goal's rules (i.e.. the rules leading from it to its subgoals) are listed in its
definition. SuB1COL has three rules. Each rule has a pattern and an action.

Patterns are large, so in figure 2-tb, most patterns have been replaced by English

4

tos well known that context-free grammars. push-gown aytomata an@ DASIC  'ransiion  nets  are
equivalent In the same way. attnibute grammars {22]. afhx grammars 23] and ATNs are equivalent
cravided that side-effect cperators e g. SETQ) are not used n the ATNs

2n rger 'n accomedate certain 2mpincal 3ata. a thirg joal 'voe. SDREACH. wil pe accec as

regresentanon tar teration across a seaguence ot ooiec!s  This qoar hype appears 0 higoere 2 P35 a
anp n the ATN S graph  Currently  Sierra represents iterahion »ith ‘1t -eaursions
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r_riL‘ | REGROU l & TWrite
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X/QVRWRT  W/OVRWRT
Goal; 1/SHOW2(TA) T po OR
v} (Write A (Read T))
| L Goal; eonno *ra ) Type: AND
(Cressout]  [Wrte B v B3l RoRRow Ta A
GOI| |/BoRRow Typx OR
G- n

Coal: START (P) Type: OR
1 [} > 508 ™

Goa! SUB (P) Type: AND
+ Let T.Band A be top, bottom and answer of then
rightmaost columa of problem P --> (1/SUB T 8 A)

Goal. 1/5UB (T 8 A) Type: OR

:© Regrouping problem format --> (REGH ]r’)

« Thereisacolumntotheleftof T .> (MULTl BA)
3 (}--> (Write A (Sub (Read T)(Read 8)))

Goat MULTI(TOA) ‘I;ype AND
{} ->(sus1CoL
Let NT, NB & NA be lhe top, bottom & answer
of the left-adiacent columnto T
-2 {SUB/REST NT NB NA)

Goal: SUB/REST (T 8 A) Type: OR
1 Theres acolumn to tha Ml ot T->(MULTITB A)
2 Bisblank --> (SHOW

3 {3 (Write A (Sub (Read TYRead B)))

Goal SHOW (T 8 A) Type: AND
v {}->{1/SHOWT A)

Goal: 1/SHOW (T A) Typs: OR
v {3 - (Write A(Read T))

Goal SUB1COL (T 8 A) Type: OR

' Bigblank -- > (SHOW2 T A)

: T<B-->(BORROWT B A)

1 {3} (Write A (Sub (Read T)(Read 8)))

Goal: 2/BORROW (TB A
v ) (Write A (Sub (

Goal: REGROUP (T) Type:

' LOtNT be the top mgut ol the loft-adjacent
column to T --> (BORROW/FROMNT)

+ {}-> (BORROW/INTQT)

Goal: BORROW/INTO (T) Type
Y )(OVRWRTT(Concat (One)(Rud ™

Goal: BORROW/FROM (TD) Type: OR
s TDis zero --> (BFZ TD)
2 (3> (OVRWRT TD (Subi (Read TD)))
Goal BFZ (T D) Ty\po) AND
8 > (2/an T0)

Goal: 1/8FZ (TD) Ty
LR § 2 (REGROU;”

Goal: 2/8FZ (TD) T{pe:
v {} > (OVRWRT TD (Sub1 (Read TD)))

Goal OVRWRT (D B) Typs: AND
0} > (X/OVRWRT D)

2 Let X be the blank space above D
--> (W/OVRWRT X N)

Goal: X/OVRWRT (D) Type: OR
v {} - (CrossOut D)

Goal: W/OVRWRT (X D) Type: OR

Yype OR
T)(M am

Goal. SHOW2 (T B A) Type: AND N
{} > (1/SHOW2 T A) v {} > (Write X D) .,
Figure 2-1: A subtraction procedure shown as (a) an asG. and (b) JS

a production system. g

S

RGN

e e e e e e e e .\"- D IPYC .o - . . . . B N
RN AN M IREN A CCICIRILY .., % PR R R IR S N A

' Lo
S Al PP VI RS WS- WP I TR

L S S S TR T SR S S S S B ¥
» A A e - .




R L A A e e MM S e iab it e U M o e i A D it el et e o o

13

giosses. A pattern is a connction of literais (i.e.. predicates or negated predicates).
Predicate arguments may be either arguments from the enclosing goal or pattern
variables. As an example. the pattern

(Column C)&(Top C T)&(Digit T)&(Bottom C B)&(Digit B)&(LessThan T B)

matches columns that require borrowing. The empty pattern aiways matches.

A rule’'s action is a form. in the Lisp sense. which calls the rule's subgoal. The
action may pass arguments to the subgoal. often by evaluating functions. For
nstance. SUB1COL's third rule has (Write A (Sub (Read T) (Read B)) as its acuon.
This action writes the difference of the top and bottom digits of a column in the

column’'s answer

An OR goal's rules are tested in left-to-right order. The first rule whose pattern
matches is executed. The learner adds new rules at the left. Hence. the left-to-right
ordering convention corresponds to a common conflict resotlution strategy in production
systems called “recency in fong term memory” [26]. Because the patterns of OR rules
test whether to execute a rule. they are called test patterns. Aithough AND rule
patterns have the same syntax as OR rule patterns, they are not used to control which
rules are executed. The order of execution of aND rules is fixed: the rules are
executed in left-to-right order. aND rule patterns are used to retrieve information in the
current problem state so that the information can be passed to the rule's subgoal

AND rule patterns are called fetch patterns.

Any learning model that describes how knowledge s constructed from smaller units s
open to questioning about its set of primitives: what are the units that are assumed 10
be present when learning begins? For complieteness. table 2-1 lists the kinds of
primitives used by Sierra. and the particular ones employed to learn the procedures
discussed in this article. In addition to these pnmitives. the intial knowledge state
may contain non-primitive procedures as well. For instance. the nmtial procedure from
which the procedure of figure 2-1 was learned contained the non-primitve goal
OVRWRT. which crosses out a symbol and wrtes another symbot over The

multiplication procedure’'s initial knowledge state included an additior procedure

The procedural representation language has been presented. The remainger of this

E‘ section s a “watk througn” of the procedure of figure 2-1 which some reader may

s
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1. Primitive actions cause a change in the current probiem state. The only
pnmitive actions used n mathematics are ones that wnte a given
alphanumeric symbol at a given position (Write). or ones that wnte special

b kinds of symbols 1CrossQOut puts a slash over a symbol. Bar wntes a bar

under a group of symbols).

2. Fact functions return a number without changing the problem state. The
tollowing fact functions were employed: Add. Sub. Add1. Subi. Muit
Quotient. Remainder. One (which always returns 1), Zero (which returns 0).
and Concat (which concatenates two numbers. e.g.. (Concat 1 4) returns
14)

4
* 3. Fact predicates return true or false without changing the problem state.
The fact predicates used were: LessThan?, Equai?. and Divisible?.

4. The primitive function. Read. returns the symbol written at a given place

Table 2-1: The four kinds of primitives used by Sierra

find helpful as a way of cementing their understanding of the representation.

The root goal START. and its subgoal. SuB. initialize column traversal to start with
the units column.  +/SuB chooses between three subgoals. muLT is for muitipte column
problems. REGROUP s for “regrouping” exercises that don't involve any subtraction at
all.  Regrouping is the part of borrowing where one digit 's reduced by one and an
adjacent digit is increased by ten. This subgoal is left over from learnming regrouping
separately from multi-column subtraction. (The lesson seguence of figure 1-1 lacks a
regrouping lesson. but most textbooks include one. This procedure was learned from
Heath's subtraction lesson sequence [13]. which has a separate regrouping lesson.)
Normally, 1,SuB never calls REGROUP. The third goal. Write. 1s for single column
subtraction probiems. The “main loop” of multi-column traversal is expressed by MULT
as a tail recursion. MuLTi calls itself via its subgoal SUB/REST SUB'COL processes a
column. it chooses between three methods for doing so if the bottom of the
column s blank. it copies the top of the column into the answer wvia the subgoal
SHCOW2 It the top digit of the coiumn is less than the bottom. it calls =0RRCw
Otherwise it writes the difference of the two digits in the answer. 3CRAROW has twe
subgoals 1:BORAQOW calls REGROUP. and 2:BORROW |ust takes the difference in the

column and wntes 1t in the answer. REGRQUP s a conjunction of borrowing into the
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column that originates the borrow (BORROWI/NTO) and borrowing from the adjacent
column (BORROW/FROM). In this procedure. BORROW.FROM occurs before BORROWANTO. It
wouid be equally correct to reverse their order. but that 1s not the way that Heath
teaches them. Borrowing into a digit is just adding ten to 1.  Borrowing from the
next column is also easy when its top digit is non-zero: the digit is decremented. If
the digit is zero. it calls 8FZ. 8FZ regroups. which causes the zero to be changed to

ten. then it decrements the ten to nine.

3. Disjunction: an inherent problem for induction

For many kinds of induction tasks. there are proofs that the task has no algorithmic
sofation. in such proofs. the induction problem is defined by specifying a class U of
all possible generalizations that the learner can output and a class T of all possible
trainings that the learner can receive. (The "U” stands for the learner’'s universe of
generalizations.) There are a variety of theorems for various U and T. For instance.
one such theorem is: If U is the class of recursive functions and T is the set of all
possibie training segquences that contain all possible positive and negative examples.
then there is no Turing machine that can learn any given generalizations from U [35.
Proposition 5). Such negative resuits guarantee that there is no straightforward

solution to induction.

The standard attack is 1o incorporate biases into the inducer [28). There are two
kinds. An absolute bras 1s a unary predictate on generalizations that says whether or
not the generalization shouid ever be output by the inducer. A relawve bias iS a
binary predicate on generalizations that says which of the two generalizations is
preferred for output in case both generalizations are consistent with the given training.
Often, absolute biases are implemented by representing generalizations n a limited
representation language. If the generalization can not be expressed in the language
(say. because the language lacks the appropriate primitives). then it will never be
output by the inducer. A relative bias. on the other hand. s usually defined by
comparing two formai expressions that represent the generalizations. Simplicity metrics
are a common relative bias. Al inducers often impiement relative biases implicitly by
the order in which they search. Because they stop when they get to the first
generatization that s consistent with the training. the search strategies act as relative
biases In short. biases correspond to two obwvious kinds of contraints: unary and

binary predicates on generalizations.
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A non-standard approach is to employ a third kind of constraint. which couid be
called a manner constraint. A manner constraint relates a generalization to the

manner in which the training is presented. A manner constraint is a binary predicate:

one argument is a generalization and the other is the form (syntax) of the training.

Both one-disjunct-per-lesson and show-work are manner constraints®.

Manner constraints are a known loophole to most formai learnability resuits. For

¢ instance. a major result (17] is that it is impossible to learn when (1) T empioys only

. positive examples and (2) U contains a generalization for every finite set of examples
and a generalization for at least one infinite set of examples. uniess (3) the examples

sequences in T are ordered by some primitive recursive function. That is. conveying

information with the order of the example sequences allows a tlearner to succeed

where it could not otherwise. The manner of example presentation is a factor that
hasn't been studied much. but is potentially quite important.

There are dozens of theorems on the learnability of certain U given certain T. In
order to obtain such results, it is necessary to be quite specific about what the U and
T are. Rather than review ail these specific results. it seems more profitable for this
article to sacrifice formality in order to uncover the key components of Us and Ts that
cause induction to be impossible. In spirit. this strategy is like Newell's Knowledge
Level strategy of stepping back from the details of countless Al problems and
representations in order to analyze them from a single perspective. which he suggests
should be the perspeclive of first order logic [34].

In that spirit, | suggest that one of the inherent problems of induction is disjunction.
Whenever U allows a generalization to be built from the disjunction of any two other
members of U, then induction is infeasible.

More specifically. suppose that g and g are two generalizations from U. Even
without knowing how they are represented. we can define their disjunction. Each

generalization has an extension. i.e.. the set of all possible examples (instances)

sThe termingingy could use a little ctlarntfication here Fehcity conaitians are defined as nlerpretie
Tanstraints on skifl acquisihon that pecple opev wirout being aware 2t them Sresumably. one coud
exphcitly tel students a manner zonstraint, N amfch case ot~ -udnt juabty as a ftenc:v conaiticne
2resymably  there Scouid be fencity tonciions '™Mat drent manner I0rsStrants. Dul. sav. -elative Diases
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consistent with the generalization Let x and x be the extensions of g and g
respectively The disjunction of g and g s any generalization whose extension is the
umon of x and x. This is the definition of “disjunction” that will be used in this
article.

Disjunctions often correspond to syntactical constructions in representational language
In AOG representations. disjunctions correspond to OR goals. In context-free grammars.
a disjunction 1s present when two oOr more rules reduce the same non-terminat
category. In production systems. a production is potentially disjunctively related to all
the other productions: 1t requires careful analysis to uncover the actual disjunctive

relationships.

Induction’s trouble occurs when the class of all possible generalizatons admits free
disjunction. That is. the disjunction of g with g 1s in the class whenever g and Q
are. When this is the case. induction acquires some strange properties that make is

seem quite unlike anything that one would want to call “learning.”

Free use of disjunction allows the learner to generate absurdly specific
generalizations. One such absurdity 1s the (nvially specific generalization: a disjunction
whose disjuncts are exaclly the positive examples that the learner has recewved. Thus.
if the learner received positive exampies a. b and c. then the disjunction (OR a b ¢) 1S
the trivially specific generalization. The trivially specific generalizaton 1s not really a
generalization at all. its extension s just a b ¢! The learner didn't really learn. it
just remembered. This problem could be solved with an arbitrary prohibition against
triviaily specific generalizations. if nothing else But there s another problem that s

much worse

When disjunctions are unconstrained. the learner has to be given the compiete
extension of the generalization being taught before 1t can rehiably discriminate that
generahzation from the others To see this. first assume that for each example. there
'S a generalizaton 1n U whose extension 1S that example and only that example  This
'S equivaient to assuming that the exampies can be represented In the representation
1anguage wused for generafizations For instance. a grammar consisting only of the rufe
S->w 15 such a generanzaton where S s the root category and w 1S a string of

terminais This grammar s extension 1s the singleton set ' w' iJsing such singteton
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generalizations and disjunction. any finte set of examples can be described by some
generalization. To get the generalization for (w1, w2! one finds the generahzation for
w1t and for :w2!. then forms ther disjunction. Since ail finite sets of examples
correspond to generalizations. the learner can't teil which generalization s correct until
it 1s told exactly what the target generalization's extension i1s. This means it must be
shown all possible examples and be told which are pasitive examples and which are
negatve examples. Such conditions. where a “learner” 1S shown a complete extension

of a generalization and asked to identify the generalization. hardly qualify as Iearnmg"

Suppose learning s viewed as the foliowing rather nawve search for generalizations
This will provide another perspective on the trouble that disjunction causes. Suppose
that the learner receves an initial example and generates a single generalization.
Suppose further that the next exampie is a positive one that the learner's current
generaiization s not consistent with. The learner has two choices: (1) to modify the
current generalization enough so that it becomes consistent with the new example. or
(2) t0 create a generalization specifically for the new example. then disjoin that
generalization with the current one.  Roughly speaking, these two choices are available
at every step. so after N examples. there will be roughly 2N possible generalizations
consistent with the examples. The point is simply that the set of consistent
generalizations grows as the learner 1S given more positive examples. It doesn't
shrink. as one would ntuitively expect of learning from examples. On the other hand

it disjuncion 1s barred from U. then there s only one choice at each step. and the

g

set of generahzations does not grow unboundedly. So this learner s failure 10 learn

can be blamed squarely on disjunction.

One-disjunct-per-lesson would constrain  this nawve learner's search while allowing
! generalizations to contain disjunctions. Maost of the time. the learner would have a
single choice However. on the first example of each lesson it would have 1wo
choices. It can erther disjoin or not If it chooses to disjon then it may not disjoin
again unul the next lesson. If it chooses not to disjoin then the twotoid choice s

agamn  avaiable on  the next example One-disjunct-per-iesson 13 ndeed  a
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straightforward solution to the disjunction problem

One-disjust-per-iesson solves the disjunction problem by modifying the relationship
between T and U Absolute and relatives biases solve the dusjuction proplem by
modifying U. A relative bias partially orders the elements of U by preferring. e g..
generalizations with fewer disjunctions. An absolute bias removes from U all
generalizations that contain disjunctions (or contain more than 13 disjunctions. etc) in
general. biases modify U. and manner constraints modify the relationship between T
and U

Biases are appropriate for a learning task when the learner can make strong a priori
assumptions about U. Manner constraints are appropriate when the learner cant make
assumptions about what's going to be learned. but it can make assumptions about
how its going to be taught. For Sierra's task domain. it 1S inappropriate to use biases
10 solve disjunct problem. There is no reason for the learner to believe that a
procedure should have no condtionals (or tess than 13 conditionals). so an absolute
bias against disjunction i1s inappropriate. There s no reason for the learner to believe
that a procedure with the fewer conditionals is better so a relative bias is also
inappropriate. However. gwven the felicity conditions hypothesis. there is reason to
believe that T and U are related. so a manner constraint such as one-disjunct-per-
lesson 1S appropriate

The preceding comments were meant to motivate the pragmatc utiity of manner
constraints 1 general. and one-disjunct-per-lesson in partcular. by considering how
one-disjunct-per-iesson helps solve the disjunction problem. one of the inherent
probiems of induction. Later. a similar motivation will be presented for the show-work
manner constraint. based on angther inherent problem of induction the nvisible objects
problem.  Manner constraints are a new techmque for solving inherent problems n
nduction Previous Al learners have employed either absolute biases or relative
oases Although any addition to Al's toolkit of techmques 1S welcome. manner
sonstraints  seem  oparticutarly welcome. for they are remarkably general as the
preceding discussion argued and they are quite effective in reducing the complexity of

programs for iearming procedures. as the remainder of this article shows
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4. Subprocedures

(n order to make one-disjunct-per-lesson easy to :mplement. the a0G representation
permits disjunctions 1n only one place. the COR goals. Thus. a disjunct 1s an OR goals
rule plus. roughly speaking. whatever that rule calls. Such fragments of a0Gs are

called subprocedures. A subprocedure consists of several components:

1 A new OR rule that is placed beneath an existing OR goal. The existing
OR goal s called the parent.

2. A new AaND goal. which i1s called by the new OR rule

3. The new anD has one or more rules. Each rule calls a new OR goal that
has |ust one rule. These ORs are merely a convenience. They provide a
place for later subprocedures to attach.

4. Each such OR has a single rule that calls some existing anD goal. These
existing AND goals are cailed the kids.

Figure 4-1 illustrates these components of a subprocedure by showing an AOG before
and after a subprocedure has been added. This subprocedure was acquired from a
iesson that teaches how to borrow across zeros. The pre-iesson AOG (figure 4-1a) can
borrow only from non-zero digits: the post-lesson aA0G (figure 4-1b: which (s the same
as figure 2-1) can borrow across zeros. BORRCOW/FROM 1S the subprocedure’s parent
The new OR rule connects B8ORROA/FROM to 3FZ. The new anD 1s 8FZ  The kids are
REGRCUP and OvARART" “BFZ and 28FZ are the new OR goais that are added as

places to attach future subprocedures.

One-disjunct-per-lesson takes us as a long way towards solving the whole procedure
induction  probiem inducing a procedure s reduced to a seres of subprocedure
induction problems. one per lesson A subprocedure induction problem reduces to

three subproblems

e Skeletons:  Skeleton induction determines the parent and the kids of the
new subprocedure This establishes the tooology of the new subprocedure
(1e the connectivity of the goals and rules) Because it doesnt Jetermine
the conaditions and action arguments of the new rules skeleton nduction s
hke inducing only the bones and not the flesn of the subproceaure

e Patterns  One-disjunct-per-iesson entails that a ryle 3 ZHndiions nave no
disjunctions This means that they can De nauced bv stangard
disjunction-free cattern 'nguction tecnmagres
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e Functions: One-disjunct-per-lesson entaiis that disjunctions are not permitted
in the nests of functions that express tre data fiow in ACGS This makes
inducing those function nests easier However section 7 shows that
function nest induction s still infeasible uniess more constraints are added
The show-work felicity condition 1s the key to Sierra s soluticn.

These three induction tasks will be discussed serally n the following sections. In
Sierra. skeleton induction happens first using one o0ass over the lesson s exampies.

Pattern and function induction occur togetner on a second pass over the examples.

S. Skeleton induction

To see what skeleton induction involves. a computer science fixture 1s needed: the
trace of a procedure's execution. Figure 5-1 shows the trace tree for a correct
subtraction procedure (the procedure s shown in figures 2-1 and 4-1b) solving a 8F2
(i.e.. borrow from zero) problem. Each call s shown as a tree node. with its
arguments abbreviated. A trace tree is just a parse tree for the action sequence,
using the procedure as the grammar.

Rougnhly speaking. a skeleton 1s a hole in a trace tree. If the procedure is missing
the 8FZ goal. then the trace tree would have a hole in the middle of it. as in figure
5-2. The gap is nght where the gFzZ node would be. From the figure. one can see
that a skeleton can be characterized by the link coming into it from above and the
links feaving it from beiow. Thus. a skeleton s uniquely specified by the parent and
the kids

Almost ail action sequences. inciuding the example of figure 5-2. admit more than
one skeleton. Most of the ambiguity 1s due to the fact that one can almost always
make a skeleton bigger. The kids can be lower in the tree (e g.. figure 5-3). the
parent can be higher (e g.. figure 5-4) Any node that would complete an otherwise

incomplete trace tree 1s a legitimate skeieton.

Sierra uses two context-free grammar parsing algornthms 10 enumerate the skeletons.
A top-down recursive descent parser is used to find all possible parents (It is actually
jJust a non-determimistic version of the regular AQOG interpreter) A bottom-up. breadth-
first parser 1s used to find all possible kids. For each parent. ail possible tuples of
kids are collected. where a kid tuple 1S a sequence of adjacent kds that together

span the same part of the action sequence as the parent. This generates the set of
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Figure 5-1: Trace tree for solution of a 8FZ problem
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Figure 5-2:  The skeleton 1S right where the 2FZ node and ‘s Jaughters were
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Figure 5-3: The kids of the skeleton can be lower
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Figure 5-4: The parent of the skeleton can be higher
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all possible skeletons. In general. there can be thousands of possible skeietons (e g.
150 possible parents) x (3 kids per kid tuple. on average) x :30 possible kids for each
tuple position on average) = 4500 possible skeletons.) Sierra represents this set

imphcitly 1n order to save space

Notice that there would be many more possibilities if it werent for one-disjunct-per-
lesson  For instance if two new subprocedures were aliowed. then Sierra would have

to collect all possible pairs of parents. each with their possible kids. etc

Parsing Sierra s a0GS 1S equivalent 1o parsing attribute grammars. for which there are
many algonthms (46] Such parsing s quite simple because the language 1S
-~phicatve (i.e.. no side effects. no assignment statements). Once a goal's arguments
are bound by s caller. those values never change. The arguments act as a
subcategorization of the goal. This makes parsing nearly as simple as context-free
grammar parsing. |f side'~effects were allowed., parsing would still be possible. but it
would be combinatonally costly, because the left (precec:.1g) context of a goal would

have 10 be included in the goal's subcategorization.

Bottom-up parsing requires inverse execution of AOG code. Sierra must be able to
tigure out the arguments of a caller from the arguments of its callee's. This requires
matching fetch patterns “backwards” and inverse evaluation of functions. The first is
easy Matching patterns backwards s the same as matching them forwards.
Backwards evaluation of arithmetic functions. such as (Add x y). is accomplished by
hand-coded inverse functions that produce sets of tupies that represent possible input
values. This technique would collapse if 1t were not feasible to assume that exampies
only use small numbers. If numbers could be arbitranly large. then other techniques
(e g.. symbolic execution. followed by solution of a system of polynomal equations)

would have to be empioyed

The techniques just mentioned generate one set of candidate skeletons per action
sequence One-disjunct-per-lesson entais that skeleton nguction can be performed
simply by ntersecting these sets Because a lesson may ntroduce |ust one
subprocedure. all the skeletons parents must be the same Because the new

Subprocedure s disjunction-free. each skeleton s list of kids must be equal 10 each

other skeleton s hist of kids. In particular two kid tuples A 3 2 and A D . cannot be
3
P
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merged by using disjunclion on the middie kid to form something like A .OR 3 Di Ci.

Skeleton intersection is powerful enough that it is usually possible t0 devise a lesson
that yields a unique skeleton when its examples' skeletons are ntersected. However.
in some cases. this is not possible. In fact. the 2FzZ skeleton that s our running
illustration cannot be uniguely specified by examplesf3 in such cases. there i1s no

choice but to guess. This means that relative biases for skeletons are required

[ Sierra has been used to test various relative biases in order to find the ones that
explain the skeleton chaices the people make. Sierra first generates all consistent
skeletons using parsing and skeleton intersection. In manual mode. it dispiays them in
a menu and allows the user to choose one. This is useful for expioration. in
automatic mode. Sierra partially orders the skeletons using the biases that are being
tested. Usually there s just one skeleton that 1S maximal in the partiai order If so.
Sierra just takes it and goes on. If there is more than one. Sierra chooses the first
one. then stores the learner's state s¢ that it can come back later and take the other
choices. There i1s nothing new about this architecture. but it s remarkable how easy
it makes it to search the space of hypotheses The current best hypothesis s that
people choose the smallest. most deeply embedded skeleton  See [44]. chapters 18

and 19. for a compiete discussion

5 1. Pnior solutions to the skeleton induction problem

Skeleton induction determines the procedure s goal-subgoal calhing hierarchy.
Inducing such hterarchies has proved t0 be a trnicky problem n machine learning.
Neves [33] used hierarchical examples to get his procedure learner to build hierarchy.
However  subtraction teachers rarely usSe such examples Badre (5] recovered
hierarchy by assuming examples are accompamed by a wntten commeniary. Each
instance of the same goal 's assumed to be accompanied by the same verd (e g

"borrow”)  This 1s a somewhat better approximation to the kind of input that students
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actually recewve. but agamn it rests on delicate and often violated assumptions. Anzai
and Simon (3] used production compounding (Chunking) to bulld hierarchy  However
to account for which of many hierarchies would be learned. Anzai used domain-specific
features. such as the pyramids characteristic of subgoal states in the Tower of Hano
puzzie. Sierra s techmique. learning by completing explanations. 1s less domain specific
than Anzar and Simon s technique. and requires less information from the teacher than
Neves and Badre's technique.

6. Pattern induction

The rules in the new subprocedure must be given appropnate congitions. The new
OR rules require test patterns. and the new AND rules require fetch patterns. Because
patterns have no disjunctions nor other representational devices that trouble induction
patterns can be induced using standard techniques. This section presents the ones
that Sierra uses. Athough pattern induction s not particularly interesting from a

theoretical standpoint. it has turned out to be the bottieneck in Sierra s performance.

Parsing an action sequence with the new subprocedure installed will pair the new OR
rule with a problem state where its test pattern would have to be true in order for the
parse to go through Such states are positive instances for the test pattern.
Similarly. parsing can uncover states where the test pattern would have to be false in
order for the parse to go through. These states are tne negative instances. The test
pattern induction problem is to find a test pattern that matches all the positive
instances and none of the negative instances. Parsing aiso collects positive instances
for the fetch patterns. together with the values that the fetch patterns should return
The fetch pattern induction problem is to find a pattern that matches all the positive

instances and returns the appropriate values each ume.

Bath induction problems are solved using version spaces (29] A version space is
represented by a par <S.G> where S s the set of maxmally speciic patterns
consistent with the instances recewved so far and G is the set of maximally general
patterns consistent with the instances To use version spaces. several apphcaton-
specific functions must be defined The most important two are Update-S and
Update-G Given a version space and a positive instance Update-S generahzes the
patterns «n S sc that they match the :nstance and remain maximally specific To

implement Update-S Sierra uses an algorithm 'nhat tnds the largest common subgraph
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of two labelled directed graphs.9 Given a version space and a negative instance.
Update-G augments the patterns in G so that they do not match the negative instance.

Update-G i1s i/mplemented with an algorithm for generating mimimat covers of a set’?

Sierra 1s designed so that pattern induction never finishes. A rule keeps the version
space of its pattern so that induction can continue whenever the pattern requires more
refinement. It is almost always the case that introducing a new subprocedure will
cause the patterns 1 older subprocedures to be modified. Those oider patterns will
be “seeing” problem states that they have never “seen” before. namely. the ones that
trigger the new subprocedure and the ones that the new subprocedure produces. In
order to continue to function properly, the older patterns must be generalized to match
these new states. The generalization of older patterns to match new situations is a
simple form of expianation-based learning. as the term s used by some authors
c.f. (1)

Since pattern induction occurs so often. it needs to be fairly efficient. However. the
Update-S computation is NP-hard. and the Update-G routine calls it as a subroutine.
More spectifically. if pattern P has n variables. and it is matched against a problem
state with m objects. then Update-S takes O(m"). These combinatorics reflect the
usual Al matching problem: Each variable in P can be paired with any object in the
problem state.

One way to deal with the complexity of pattern induction is 10 use a small n and/or
m. For instance, blocks-world inducers (e.g.. [12. 48]) typically have an n and m of

less than 5. Using a smail n and m is impossible in Sierra’'s case. [ts task domain

9Suevra's patterns are conuctions 3t htterals. where a htteral s a predwcate 2+ a negated predgicate
Such patterns are Similar 1o ‘abeiled directed grapns. wvnere the vanaples are ~)ydes 4ang rhe retations
are labelleg arcs. f all the pregicates (1 a pattern are pinary. the cosrespondente s exact

"OGwen a g frem G that matches the negative nstance N. and an s trom S tnat dcesnt! matcn N
Lpdate-G needs to “nd relations 0 s 10 aad o g such that the rewsed 3 doesrn! maten N upcate-G
hrst generates all possibie mappings of the vanapbles cof § 'nto the vanabies 2 N. Each such mapping
vecomes an element ot the set ot maps. M. to be covered. Each relaton :n s s parred +.th 'ne syoset
a2t M that contains the maps under which the relation s not a mempe- > N Tre relator s sad 0
“~sver’ that suybset of M. A kev fact s that a conjunchion of refations Tovers at ‘east e cwae ot ther
t2rodual covers of M The main goal s to find the smallest comuncuon =t -eraticas "tat Tovers il of
Vo Such a conmunchign s not @ memper ot N under any map. sO adding 1o g wnl vieig a pattern that
Joesnt matcr N which 1S what w~e want So the aigonttm for trdarg mAamar covers > M oovielas
:andidates tor e revised g Some 3! inese cangidates mav generanze ners 5o Looare G as ane
more task, ahich s o filter out the <ardidates that are nor maomally generai
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requires proolem states with 10 to 50 objects The larger patterns in the version
spaces have about the same numper of variables as objects n the problem states
thev were induced from The combinatorics tor straightforward pattern inducer can go

as mgh as 50°°

A second solution s to impose constraints an which variaple-object mappings will be
considered Sierra uses two constraints. First. pattern vanables have an mplicit
inequally relationship between them That 1s. distinct variables must match distinct
objects. This lowers the combinatorics to the bdinomial coetficient fuction O(n'/[(n-
m'm'}) Second the patterns and problem states are split into two components. a
part-whole tree and the rest In a problem state. the part-whole tree s simply the
usual parse lree for the mathematical notation For instance. a subtraction problem s
parts are its columns and a columns parts are its digit in patterns. there are
vanables for each of the components (e . a vanable for the problem for each coiumn
ang for each digt). and therr part-whole relatonships are kept separately from the
main pattern Pattern induction (and pattern matching, too) considers only variabie-

" This cuts the complexity

object mappings that do not violate the tree topologies
down to O(B!'°98™). where B is the branching factor of the part-whoie trees. typically
about three  When this constraint is turned off in Sierra an Update-S that normally
takes 10 seconds takes hours. This constraint. or something like it. is a practcal
necessity Even with it. most of Sierra's time 1S spent running the pattern nduction
algorithms "¢ In a typical run. apbout 70% of the time is spent doing pattern

induchions
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" 7. Function induction

,

Some of the rules n the new subprocedure may require function nests to Dbe

induced for their actions. Functions are used to represent number facts. such as

A N

(Sub 17 8)=9. A typica: function next is (Sub (Add 7 10) 8) This section discuss

e

how function nests can be iearned. This learning task 1S called funcuon nguction

XX

Function induction involves discovering which function or nest of functions will yield the
numbers shown in the examples. For instance. suppose the learner already knows
how to do single column subtraction problems. and it is taking a lesson on two-column

subtraction. After seeing examples a and b.

a.

—_ =

- N

7 b. i
=41 =21

31 53

[N NN "-1.' L

there are many function nests that expiain where the tens column answer comes from

Here are three candidates:

= T..B

9 710

thd
>
]

T'+B’

3. AL = Ty +T)B +B A,
where the subscripts indicate the column, and 7. B and A stand for the top. bottom
and answer The first generalization is the correct one. The second generalization is
that the ten's answer is the sum of the units columns digits. This second

generalization. aithough consistent with examples a and b. is inconsistent with c:

c.

‘—.w
N o

L)%}
&=

Many such accidental generalizations can be etiminated by giving lots of examples.
However. generatization 3 can never be eliminated that way. it 1s true of any
subtraction problem. This may seem hke a peculiarity of this case. but it 1snt There
are infinitely many polynomials consistent with any finte set of input-output number
tuples In particular. there are infinitely many n-degree polynomials consistent with any

n points

The wunderlying problem has nothing to do  with the fact that functions and

oolynomials  are  'he representation ianguage of generalization Any functionai
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expression can be_easily converted to a relational one For instance generalization 3

apove could be expressed as

(AND (PLUS X T.. T.)
(PLUS Y B.. B.)
(PLUS Z A.. A,)
(MINUS Z X Y)

(INVISIBLE X)
(INVISIBLE Y)
(INVISIBLE Z))

where (PLUS u v w) means u=v+w. The special relation INVISIBLE IS needed because
X. Y and Z do not match any of the visible objects in the examples. Under normal
confirmation conventions for relational descriptions [19]. the variables match only visible
objects. so variables that designate nvisible objects must be specially marked. and

that 1s what ‘NVISBLE does

Looked at this way. the underlying mnduction probiem is clear: f the representation
allows invisible object designators. then there will always be far too many
generalizations consistent with any finite set of examples. Some constraint must be
placed on the use of invisible objects in examples. This induction problem will be

called the invisible objects probiem.

7 1. Pnor solutions to the invisible objects problem

Al's most common solution to the invisible objects probiem is to ban invisible object
designators from the representation. For nstance. Winston's blocks world
representation language [48] could have employed an elegant expression of the arch

concept if it allowed invisible objects:

(AND (ISA LINTEL 'PRISM)
(ISA LEG1 'BRICK)
(ISA LEG2 'BRICK)
(ISA GAP 'BRICK)
(INVISIBLE GAP)
(SUPPORTS LEG1 LINTEL)
(SUPPORTS GAP LINTEL)
(SUPPORTS LEG2 LINTEL)
(ABUTTS LEG! GAP)
(ABUTTS GAP LEG2))

Tnis savs that the hntel rests on three abutting bricks. and the middle one :s invisible

iJsing a aifferently snaped nvisibie blocks for the gap 1S a simple way to describe
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pyramidal. trapezoidal and circular arches as well as the rectangular arch above
However. the invisible objects problem makes it impossible to nduce sucCh descnphions
Once invisible blocks are allowed. they could be anywhere  The :nducer would have
no way of knowing whether there was just one invisibie block the gap. or dozens lying
around ail jumbled up Winston avoids the problem by omitung invisible object
designators from the representation. and employing the relationship

NCT TOUCHING LEG: .EG2- 10 express the gap between the archs legs

Banning invisible object designators 1S one way to solve the invisible objects problem Zf-'_lf-‘_
But it wont work in the mathematical domain. Invisible object designators are needed
for representing procedures such as multi-addend addition. In the problem 1+3+5=9 .L

the intermediate result. either a 4. 8 or 6. is invisible. s

As mentioned earlier. absolute and relative biases are the two customary ways !0
succeed at induction. An absolute bias. banning invisible objects. was just discussed.
For a relative bias. the obvious candidate is to prefer generalizations with the fewest f‘;_--

invisible objects. This 1s roughly what BACON3 does [24]. It induces physical laws

given tables of idealized experimental data. For instance. it can induce the general

law for ideal gases when it is given “experiments” such as this one

(AND (MOLES 1.0)
(TEMPERATURE 300.0)
(PRESSURE 300000.0)
(VOLUME 0.008320))

This formal representation describes the experiment in the same way that Winstons ;
representation described a scene n the blocks world ithis 1s not the representation \
that BACON3 uses. by the way). The expression above says that there s one mole of "‘\‘
gas at a certain temperature and pressure occupying a certain volume. The goal of I
BACONY 18 to find a description that 1s a generalizaton of the expenments that it s

given  For experiments of this type the generalization that it induces 1s:
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(AND {MOLES N)

(TEMPERATURE T)

(PRESSURE P)

(VOLUME V)

(TIMES X1 P V)

(INVISIBLE X1)

(TIMES X2 N T)

(INVISIBLE X2)

(QUOTIENT X3 X1 X2)

(INVISIBLE X3)

(CONSTANT X3))
That 1s. PV/NT 1s a constant This is one way to express the ideal gas law. which s
more widely known as pV=nRT where R=8.32. The intermediate results PV. NT and
PV/NT do not appear in the “scene” described earlier. This is what makes BACON3'S
job hard. BACON3's method for solving this induction problem is. very roughly
speaking. to guess useful invisible objects descriptors and enter their values In the
scenes. It might start by forming all binary function on the visible objects. e.g., NT.
P-V. PP PIT. etc. Since none of these yield values (invisible objects) that are
constant across all the scenes. it trys further compositions: NT/PV. NT+V. NTPV, etc.
At this level. it succeeds. since PV/NT turns out to be the same value. 832, in all the
scenes Essentially. BACCN3 solves the invisible object problem by choosing a

generatization with a minimal number of invisibie object designators.

BACON3 1S not an incremental inducer It assumes that it has the total example set
at the pegmning. There 1s a reason for this. Any inducer that seeks a generalization
with  the fewest nusible object designators would clearly want to entertain
generalizations with N+ 1 invisible object designators only after it had disconfirmed all
the generalizations with N nvisible object designators However. adding an nvisibie
object designator to a disconfirmed generalizaton wont help it a bit.  That is. f f(g(x))
doesnt match a certain example. then wrapping an h(-) around 1t won't help'3.  This
means that failure at the level of N invisible objects doesn't tell one anything about
what generahizations to use at the N+ 1 level If the inducer is incrementai. and t is
at the N' level. and the M'" example exhausts the level then the inducer must start

over at the N+1 level and re-examine all M examples ft wouid be better off just
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waiting untii the teacher told it that all the examples were presented. then do a non-
incremental induction. This would require a manner constraint. The teacher would
have to mark the example presentation. and the learner would have to understand
such marks as indicating that it was okay to begin non-incremental induction. As 1t
turns out. naturally occuring mathematical curricula do empioy a manner constraint. but
it is not the one just mentioned. The next subsection describes the one that actually
occurs.

7.2. The show-work felicity condition

In aimost all cases. textbooks do not require the student to do invisible object
induction. instead. whenever the text needs to introduce a subskill that has a mentally
held intermediate result, it uses two lessons. The first introduces the subskili using
special. ad hoc notations !0 indicate the intermediate results. Figures 7-1 and 7-2
show some examples. Since the intermediate results are written out in the first
lesson. the students need guess no invisible objects in order to acquire the subskill.
The learning of this lesson may proceed as if invisible object designators wer2 banned
from the representation language.

The second lesson teaches the subskill again. without writing the intermediate resuits.
The second lesson is almost always headed by the key phrase. "Here is a shorter
way to X" where X is the name of the skill. The students are being instructied that
they will be doing exactly the same work (i.e.. the path of fact functions is the same).
They are left with the relatively simple problem of figuring out how the new material
relates to the matenal they learned in the preceding lesson. This kind of learning is
a kind of optimization. They learn how to do the same work with less writing. So. the
normal lessons are “show work” lessons: the learner does nvisible object-free
induction. The marked lessons are "hide work” lessons: the learner does optimization
learning. The felicity condition is called “show-work / hde-work” or just show-work for
brevity.

7.3. Parallels between the inwisible objects problem and the disjunction problem

The invisible object problem and the disjunction problem are similar M many
respects. (1) Both the invisible objects problem and the disjunction probiem are
1mpossible to solve using unbiased induction it the class of all possible

generalizations ailows free use of them. then there are far too many generahzations
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;
; 3+2 + 4 = 3+2 + 4 =
i + 4 = 5 + 4 = |9
. 3 .
3 2 3 2
+ 12 + 4 + |2 + 4
2 5 9

evaveva"als

Figure 7-1: Three formats for column addition obeying the show-work principle
Exercises appear unsolved on the left. solved on the rngnht




Figure 7-2: Other exercise formats obeying the show-work prninciple
Exercises appear 'n normal format on left. 0 snow-work format on right
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consistent with any finite set of examples. Hence. both the disjunction problem and
the invisible object problem require extra constraints. (2) Both can be solved trivially
with absolute biases: bar their representational devices from the representation
language. This is not a viable option in the mathematics domain because the target
procedures use both disjunctions and invisible objects. (3) In both cases. a relative
bias that works s to minimize the use of the respective devices (i.e.. to prefer
generalizations with the fewest disjuncts and the fewest invisible object designators). (4)
For empirical reasons. mimmization biases are not inciuded in the theory. More
accurate hypotheses are based on felicity conditions. i.e.. tacitly held manner

constraints.

8. Task generality

Subtraction is the only task for which | have an extensive data from human learners.
so Sierra was developed primarily to simulate the learning of subtraction. in order to
make a rough assessment of its task generality. Sierra was given lesson sequences for
three new task domains. whose lesson sequences were drawn from a popular

elementary mathematics textbook [13]:

1. Addition of multi-column. multi-addend problems. such as

307
81
+620

2 Multphcaunon of multi-column multiplication problems, such as

307
x 25

3 Sixth grade algebra The skill is to solve linear equatons with one
occurrence of one unknown. with natural number solutions. At the end of
the sixth grade. students are expected to be able to solve 5(3x+ 1)=20 but
not 3x+2x=10 or 5(3x+ 1 =9

Sierra learned correct procedures for all three skills. although there are some
caveats 1o this assertion that will be discussed in a moment. Rather than go through
Sierra s learming n detail. this section describes the difficulties encountered and the

kinds of revisions that would be required resoive them.

One probiem s that a FCFEACH goal type 1s needed Given a seguence of objects
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of the same type (@.g.. a sequence of columns), a FOREACH would execute a subgoal "
on each object. This new goai type IS needed because some naturally occuring .z_,_:
lesson sequences are not quite right for learning the tail-recursions that Sierra currently -

uses to implement loops. Although the lesson sequences can be easily modified. that
wouid harm Sierra’'s cognitive fidelity. To keep Sierra empirically accurate. a new
relative bias towards iteration 1S needed for skeleton induction This bias 1s most
effectively implemented by including the FOREACH goal type in the representaton
lfanguage.

A problem was discovered durnng the last multiplication lesson. At the tme of the

lesson. the learner can solve single-digit multiplier problems, such as (a) below.

3
a. 57 b. 57
x_5 x 15
285 285
+570
855

Note the use of the scratch marks to indicate carrying. The lesson teaches how 10
do two-digit muitiplier problems. such as (b) above. The addition subproblem presents
no difficulties for Sierra. because the initial knowledge state for multiplication inciudes

a muiticolumn addition procedure that was learned from the addition lesson sequence.

The problem with the lesson s that it does not use scratch marks to indicate
carrying. This causes two difficulties for Sierra. First. the textbook does not include
an optimization lesson to teach how to suppress carry marks (using examples such as
(c) below).

Perhaps teachers present such exampies on their own intiative. without the guidance
of a textbook lesson. A more serious problem is that even if there were an
optimization lesson. there 1S no easy way to modify the multiplication procedure
order to suppress the scratch marks. The procedure has a loop. which iterates
leftward through the top row. mulliplying the row's digits by the single-digit muitiplier
A carned aignt s writen dunng one nvocaton of the ioop body and read during

another nvocation of the loop body (the next one n fach For this datatlow to
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happen applicatively. without wrniting on the page. the second invocation must somehow
be called from the first invocation. There s no way 10 achieve this without a
complete overhaul of the procedure's calling structure  Sierra cannot do Such a major
overhaul. I'm not sure what students do Dbecause | have no data for multiphcation.
However. | suspect that they do not raadically overhaui theirr understanging of the
procedure just to suppress scralch marks | suspect that they use ther hngers 10
hold the carried digit between multiples. or they use some short-term memory resource
10 do so. Implementing the latter possibility would entail making the representation
language non-applicative. which would make parsing much more complex On the
other hand. if students use their fingers. then the hypotheses and representation can
remain ntact. but the representation of the state of a muitiplication problem wouid
have to have a “hand” added to Either modification would require sigmificant
enough programming that | simply stopped Sierra’s traversal of the muitiplication

sequence at this lesson. It was the last one. anyhow

The most significant task dependencies concerned notational syntax. This is not
surprising. since the four tasks employ quite different notations. Sierra’'s treatment of
problem states and their syntax has not yet been discussed in this article (see [44]).
The basic idea. however. 1S simple to present. Problem states are represented as
letters. digits and lines situated on a Cartesian plane. and a two-dimensional context-
free grammar 1s used to parse them. This technique falled in some cases. For
instance. given the expression “5-x”. the minus sign must be viewed two ways: as a
prefix for the term following it and as an infix operator that separates the two terms.
So there are two parse trees for “5-x.” four for "2+(5-x).” and so on. Sierra’s
context free grammar technique is combinatorially explosive. A better soifution would
be to redesign the parser and pattern matcher so that they keep local ambiguities
local This might. in fact. be the first step toward an interesting theory of the

interpretation of mathematicali notation.

To sum up. there were two main difficulties in geting Sierra to learn other skills
than subtraction (1) The dataflow architecture 1s incomplete. Some giobally bound
resource (e g fhingers. short-term memory) 1s needed !0 do carrying without scratch
marks (2} The notational grammars are not guite expressive enough  Peoole seem
to view the same problem state several ways a faciity that Siefra s grammar system

aoes not adequately support
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9. Concluding remarks

until now 1t seemed that to be successful. an inducer had to use either absolute or
relative biases To put 1t differently successful inducers have either been partally
bling or strongly prejudiced Sierra s a demonstration that there s a thrd way An
inducer can be successful If it recewves a well-structured example sequence whose
structure it understands. That is. the example sequence obeys certain manner
constrants and thereby encodes information about the structure of the target
generalization. The learner takes advantage of these constraints in order 10 recover
the “message” that is encoded in the form of the exampie sequence In human
learning situations. if neither teacher nor learner are aware of the manner constraints
then they warrant the name felicity condiions So a successful inducer 1s esther

partially blind, strongly prejudiced. and/or felicitiously taught

9.1. Some speculations on manner constraints and felicity conditions

In a certain sense. manner constraints may be optimal strategies for know!edge
communication. For instance. in order to solve the learner's disjunction problem. the
teacher’'s optimal strategy would be to point 1o a node in the learner's knowledge
structure and say “disjoin that node with the following subprocedure:. . . " Clearly,
this is impaossible. So the teacher says the next best thing. “Disjoin some node with

”

the foilowing subprocedure:. The learner must figure out which node to disjoin
because the teacher can't point to it But the learner now knows that some
disjunction is necessary and that the examples following the teacher's command wiii
determine 1its contents. If it were not for the exigencies of school scheduling. this
would be perhaps the optmal information transmission strategy. However. lessons
must be about an hour long. This means that only some of the lesson boundaries
will correspond to the teacher's command to start a new disjunction. The other
lessons will finish up a previous lesson. In short, the optimal. feasibie manner

constraint for disjunctive information transmission could well be one-disjuct-per-lesson.

There 1s a great deal of comptaiming about the so-called knowledge acquisition
bottleneck n developing expert systems It seems to be quite difficuit to get human
experts to formalize therr expertise as e g.. production rules One often heard solution
's 10 have the system learn the knowledge on its own €Q by discovery of by
analogy (eg [23. 28} | tend to agree with Simon (42] who predicts that

programming w~il always be the most effective way to “"educate” computer However
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f Simon and | are wrong. and machine learning does hold promise as a solution 10
the knowledge acguisiion bottleneck. then examining how human experts acquire therr
knowledge 1s a good research heunstic  Even a cursory examinaton shows that most
human experts didn't discover ther knowledge or infer 1t they learned 1t from a

* A good mentor s careful about

mentor. either in school or as an appremlce'
selecting tasks for the student that are appropnate for the student's current state of
knowledge. That s. the nstruction is not a randomly ordered sequence of tasks. but
a carefully structured one Yet few researchers are trying to ge* an expert systems to
learn from the kinds of structured mstruction that human experts receive. Such a
system would take advantage of the format that its mentor places on the instruction.
The present research. n its expiication of felcity conditions. should be heipful in
building such a knowledge acqguisition system. Such a system will be easier for
human experts to educate than present systems because the experts. many of whom
are experienced teachers. are more familiar with formatting their knowledge as lesson

sequences than as production rules

9.2. Summary

Putting speculation aside. ')l review the techniques that have been presented. The
formost i1s one-disjunct-per-lesson. Because of it. Sierra's design is quite simple. The
procedure nduction problem s reduced to a series of subprocedure induction
problems. one per lesson. Subprocedure induction reduces to three subprobiems:

skeleton induction. pattern induction and function induction.

Skeleton induction 1s performed by parsing the action sequences top-down as far as
possible and bottom-up as far as possible. in neither case will parsing yieild a
complete parse tree To complete the parse tree. a new piece of tree structure must
be built to connect the top-down parse !0 the bottom-up parse. Any such structure s
a candigate skeleton This duai-parser calcufation 15 done on each example in the
lesson. yielding one set of skeletons per example. These sets are intersected. yieiding

the skeleton(s) that are consistent with all the examples in the lesson.
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Pattern induction 1s performed by a sStandard technique. Mitchell's version space
algorithm (29].

Function induction can employ a brute force generate-and-lest aigorithm because
there 1S a manner constraint that simplifies the problem. The show-work constraint
says that examples must “show all the work” when introducing an new subprocedure.
That is. intermediate results must be wrntten on the exampie where the learner can

”

“see” them. Because a composition (nest) of two primitive functions has an
intermediate resuit that is not written down., composite functions can not be introduced
during a normal lesson.  Consequently, the learner only has to consider prmitive
functions and not compaositions of functions when it does function induction. The show

work constraint makes function induction aimost trivial.

9.3. Discussion

The “per iesson” part of one-disjunct-per-lesson is slightly misleading. It turns out

]
PO}

that Sierra could get along just fine without lessons. The skeleton induction algorithm

N
2 ’

is the one component that controis the introduction of disjunctions. The algorithm fails

..
e e
s 4

Y

only f an example introduces two or more disjuncts. In particular. just by omitting
skeleton intersection. Sierra could get along fine without lesson boundaries. Its two
manner constraints would become (1) at most one disjunct per example. and (2) an
example 1S induced without invisible object designators uniess it is marked as a same-
work example. A per-example learner might be more appropriate for some knowledge

acquisition tasks than the current per-lesson version.

It bears reiterating that the dual-parser technique that performs skeleton induction is
simple and efficient because the procedure representation language is applicative. If
the language allowed side-effects. such as storage of information in giobal butfers or
variables. then parsing would be much more difficult.

As mentioned eariier Sierra consists of three induction algorithms. for. respectively.
skeletons. patterns and functions This three-way decomposition may apply to other
learning tasks than procedure learmng  The appitication of the induction aigorithms 1S
limited only by the taopology of the knowledge representations. and not. of course. by
what those knowledge representations denote | would expect these algonthms to

apply. for instance. 1o other learning-by-explanation tasks  Explarations of stories often
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feature hierarchical structures simiiar to the calhng structures of procedures Such
explanations are generated Dy instantiating and composing schemata  These schemata
are analogous 10 subprocedures  Schemata otten contain restrictions on siots tnat are
aquivalent 1o patterns 't these equivalences nold then learning new schemata could
be agccomplisned by the same tecnmques that are used here to learn subprocedures
"0 take a second example electronic cicuits and other engineered devices are often
Jdesignec to have a hierarchy of modules This hierarchy corresponds to the calling
merarchy ot procedures  Patterns and funcuons may have analogs n device designs
as well f so then the techmques presented here mught suffice to learn how (o
analyze gevices In short. the three-way decompositon of the nduction problem nto
nduction of hierarchies. induction of pattern-ike constructs and nduction compositions

may te quite generally applicable.

Serra s skeleton induction 1s a form of context-free grammar induction. since the
skeleton of a whole AOG is precisely a context-free grammar. Skeleton nduction can
pe used to nduce grammars. as long as the learnefs example sequence conforms 10
one-disjunct-per-example On the other hand. f one-disjunct-per-example 1S not an
appropriate manner constraint for some domain. then some other grammar induction
algonthm may be employed to perform skeleton induction. while the other two induction
algorthms can remain relatively unchanged (for reviews of grammar induction.
see {15 9

A Dbeneficial consequence of one-disjunct-per-lesson is that rule patterns are pure
conjunctions  This means that a non-heuristic. complete induction algornthm. based on
Mitcheil s version space technique {29]. can be employed to induce the conditions.
However it turns out to be infeasible 10 use just the version space technique. For
empirical reasons. Sierra mus. use non-toy patterns A single pattern may have 50
varables and 200 retations. For oatterns of such sizes. induction 1s |ust not practical
~itheut further constraints on  patterns Fortunately. there are several well-motivated
constraints available in this domamn. The two mentioned at the end of section 6 seem

akety 10 pe usefu! outside the present domain

The rusiDe ociects problem was somewhat of a surprnise It took a long time 1o
gure Sut trat turcthon anduction had an inherent problem (e that Sierra wasnt a

chmoar ncomoplete sets 01 examples) It took even longer to become convinced that
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there is no least-commitment. incremental algorithm to solve it. such as the version
space aigorithm. If an inducer cannot ban invisibie object designators. there seem 10
be only two ways 10 get around the inwisible-objects probiem: BACON3'S non-incremental
induction (see section 7) or Sierra's show-work manner constraint.  Perhaps more
research will find other techmques. The problem of inducing Iinvisible object

N designators has recewed little attention from machine learning.
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